Product Code Database
Example Keywords: indie games -suit $16
barcode-scavenger
   » » Wiki: Q Factor
Tag Wiki 'Q Factor'.
Tag

In and , the quality factor or factor is a dimensionless parameter that describes how an or is. It is defined as the ratio of the initial energy stored in the resonator to the energy lost in one of the cycle of oscillation.

(2025). 9781483162287, Newnes. .
factor is alternatively defined as the ratio of a resonator's centre frequency to its bandwidth when subject to an oscillating driving force. These two definitions give numerically similar, but not identical, results.
(2025). 9780750669238, Newnes. .
Higher indicates a lower rate of energy loss and the oscillations die out more slowly. A pendulum suspended from a high-quality bearing, oscillating in air, has a high , while a pendulum immersed in oil has a low one. Resonators with high quality factors have low , so that they ring or vibrate longer.


Explanation
The factor is a parameter that describes the behavior of an underdamped harmonic oscillator (resonator). driven having higher factors with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the bandwidth. Thus, a high- in a radio receiver would be more difficult to tune, but would have more selectivity; it would do a better job of filtering out signals from other stations that lie nearby on the spectrum. High- oscillators oscillate with a smaller range of frequencies and are more stable.

The quality factor of oscillators varies substantially from system to system, depending on their construction. Systems for which damping is important (such as dampers keeping a door from slamming shut) have near . Clocks, lasers, and other resonating systems that need either strong resonance or high frequency stability have high quality factors. Tuning forks have quality factors around 1000. The quality factor of , superconducting RF cavities used in accelerators, and some high- can reach as high as 1011

Encyclopedia of Laser Physics and Technology: Q factor and higher.

Time and Frequency from A to Z: Q to Ra

There are many alternative quantities used by physicists and engineers to describe how damped an oscillator is. Important examples include: the , relative bandwidth, linewidth and bandwidth measured in octaves.

The concept of originated with K. S. Johnson of Western Electric Company's Engineering Department while evaluating the quality of coils (inductors). His choice of the symbol was only because, at the time, all other letters of the alphabet were taken. The term was not intended as an abbreviation for "quality" or "quality factor", although these terms have grown to be associated with it. B. Jeffreys, Q.Jl R. astr. Soc. (1985) 26, 51–52

(2025). 9783527408283, Wiley-VCH. .


Definition
The definition of since its first use in 1914 has been generalized to apply to coils and condensers, resonant circuits, resonant devices, resonant transmission lines, cavity resonators, and has expanded beyond the electronics field to apply to dynamical systems in general: mechanical and acoustic resonators, material and quantum systems such as spectral lines and particle resonances.


Bandwidth definition
In the context of resonators, there are two common definitions for , which are not exactly equivalent. They become approximately equivalent as becomes larger, meaning the resonator becomes less damped. One of these definitions is the frequency-to-bandwidth ratio of the resonator:

Q \mathrel\stackrel{\text{def}}{=} \frac{f_\mathrm{r}}{\Delta f} = \frac{\omega_\mathrm{r}}{\Delta \omega},

where is the resonant frequency, is the resonance width or full width at half maximum (FWHM) i.e. the bandwidth over which the power of vibration is greater than half the power at the resonant frequency, is the angular resonant frequency, and is the angular half-power bandwidth.

Under this definition, is the reciprocal of fractional bandwidth.


Stored energy definition
The other common nearly equivalent definition for is the ratio of the energy stored in the oscillating resonator to the energy dissipated per cycle by damping processes:Slyusar V. I. 60 Years of Electrically Small Antennas Theory.//Proceedings of the 6-th International Conference on Antenna Theory and Techniques, 17–21 September 2007, Sevastopol, Ukraine. - Pp. 116 – 118.
(2025). 9788189411237, Technical Publications. .

Q \mathrel\stackrel{\text{def}}{=} 2\pi \times \frac{\text{energy stored}}{\text{energy dissipated per cycle}} = 2\pi f_\mathrm{r} \times \frac{\text{energy stored}}{\text{power loss}}.

The factor makes expressible in simpler terms, involving only the coefficients of the second-order differential equation describing most resonant systems, electrical or mechanical. In electrical systems, the stored energy is the sum of energies stored in lossless and ; the lost energy is the sum of the energies dissipated in per cycle. In mechanical systems, the stored energy is the sum of the and energies at some point in time; the lost energy is the work done by an external , per cycle, to maintain amplitude.

More generally and in the context of reactive component specification (especially inductors), the frequency-dependent definition of is used:

(1989). 9780201172881, Addison-Wesley Publishing Company.

Q(\omega) = \omega \times \frac{\text{maximum energy stored}}{\text{power loss}},

where is the angular frequency at which the stored energy and power loss are measured. This definition is consistent with its usage in describing circuits with a single reactive element (capacitor or inductor), where it can be shown to be equal to the ratio of to . ( See Individual reactive components.)


-factor and damping
The -factor determines the behavior of simple damped oscillators. (For mathematical details about these systems and their behavior see harmonic oscillator and .)

Starting from the stored energy definition for, it can be shown that Q = \frac{1}{2\zeta}, where \zeta is the damping ratio. There are three key distinct cases:

  • A system with low quality factor () is said to be overdamped. Such a system doesn't oscillate at all, but when displaced from its equilibrium steady-state output it returns to it by exponential decay, approaching the steady state value . It has an that is the sum of two decaying exponential functions with different rates of decay. As the quality factor decreases the slower decay mode becomes stronger relative to the faster mode and dominates the system's response resulting in a slower system. A second-order with a very low quality factor has a nearly first-order step response; the system's output responds to a step input by slowly rising toward an asymptote.
  • A system with high quality factor () is said to be underdamped. Underdamped systems combine oscillation at a specific frequency with a decay of the amplitude of the signal. Underdamped systems with a low quality factor (a little above ) may oscillate only once or a few times before dying out. As the quality factor increases, the relative amount of damping decreases. A high-quality bell rings with a single pure tone for a very long time after being struck. A purely oscillatory system, such as a bell that rings forever, has an infinite quality factor. More generally, the output of a second-order with a very high quality factor responds to a step input by quickly rising above, oscillating around, and eventually converging to a steady-state value.
  • A system with an intermediate quality factor () is said to be critically damped. Like an overdamped system, the output does not oscillate, and does not overshoot its steady-state output (i.e., it approaches a steady-state asymptote). Like an underdamped response, the output of such a system responds quickly to a unit step input. Critical damping results in the fastest response (approach to the final value) possible without overshoot. Real system specifications usually allow some overshoot for a faster initial response or require a slower initial response to provide a safety margin against overshoot.

In negative feedback systems, the dominant closed-loop response is often well-modeled by a second-order system. The of the open-loop system sets the quality factor of the closed-loop system; as the phase margin decreases, the approximate second-order closed-loop system is made more oscillatory (i.e., has a higher quality factor).


Some examples
{\delta} \frac{1 - m^2}{v^2_{m,p}}, where is the cavity wall radius, is the of the cavity wall, is the scalar ( is the azimuth index, is the radial index; in this application, skin depth is )}} | In medical ultrasonography, a transducer with a high -factor is suitable for doppler ultrasonography because of its long ring-down time, where it can measure the velocities of blood flow. Meanwhile, a transducer with a low -factor has a short ring-down time and is suitable for organ imaging because it can receive a broad range of reflected echoes from bodily organs.
(1990). 9780812113105, Lippincott Williams & Wilkins. .


Physical interpretation
Physically speaking, is approximately the ratio of the stored energy to the energy dissipated over one radian of the oscillation; or nearly equivalently, at high enough values, 2 times the ratio of the total energy stored and the energy lost in a single cycle.
(2025). 075030989X, Institute of Physics Pub. . 075030989X

It is a dimensionless parameter that compares the exponential time constant for decay of an physical system's to its oscillation . Equivalently, it compares the frequency at which a system oscillates to the rate at which it dissipates its energy. More precisely, the frequency and period used should be based on the system's natural frequency, which at low values is somewhat higher than the oscillation frequency as measured by zero crossings.

Equivalently (for large values of ), the factor is approximately the number of oscillations required for a freely oscillating system's energy to fall off to , or about or 0.2%, of its original energy., Ch. 18 This means the amplitude falls off to approximately or 4% of its original amplitude.

(2025). 9781558607354, Elsevier.

The width (bandwidth) of the resonance is given by (approximately): \Delta f = \frac{f_\mathrm{N}}{Q}, \, where is the natural frequency, and , the bandwidth, is the width of the range of frequencies for which the energy is at least half its peak value.

The resonant frequency is often expressed in natural units (radians per second), rather than using the in , as \omega_\mathrm{N} = 2\pi f_\mathrm{N}.

The factors , , natural frequency , attenuation rate , and exponential time constant are related such that:

Q = \frac{1}{2 \zeta} = \frac{ \omega_\mathrm{N} }{2 \alpha } = \frac{ \tau \omega_\mathrm{N} }{ 2 },

and the damping ratio can be expressed as:

\zeta = \frac{1}{2 Q} = { \alpha \over \omega_\mathrm{N} } = { 1 \over \tau \omega_\mathrm{N} }.

The envelope of oscillation decays proportional to or , where and can be expressed as:

\alpha = { \omega_\mathrm{N} \over 2 Q } = \zeta \omega_\mathrm{N} = {1 \over \tau} and \tau = { 2 Q \over \omega_\mathrm{N} } = {1 \over \zeta \omega_\mathrm{N}} = \frac{1}{\alpha}.

The energy of oscillation, or the power dissipation, decays twice as fast, that is, as the square of the amplitude, as or .

For a two-pole lowpass filter, the transfer function of the filter is

H(s) = \frac{ \omega_{\mathrm N}^2 }{ s^2 + \underbrace{ \frac{ \omega_{\mathrm N} }{Q} }_{2 \zeta \omega_{\mathrm N} = 2 \alpha }s + \omega_{\mathrm N}^2 } \,

For this system, when (i.e., when the system is underdamped), it has two complex conjugate poles that each have a of . That is, the attenuation parameter represents the rate of exponential decay of the oscillations (that is, of the output after an ) into the system. A higher quality factor implies a lower attenuation rate, and so high- systems oscillate for many cycles. For example, high-quality bells have an approximately for a long time after being struck by a hammer.

+ Transfer functions for 2nd-order filters


Electrical systems
For an electrically resonant system, the Q factor represents the effect of electrical resistance and, for electromechanical resonators such as quartz crystals, mechanical .


Relationship between and bandwidth
The 2-sided bandwidth relative to a resonant frequency of (Hz) is \frac{F_0}{Q}.

For example, an antenna tuned to have a value of 10 and a centre frequency of 100 kHz would have a 3 dB bandwidth of 10 kHz.

In audio, bandwidth is often expressed in terms of . Then the relationship between and bandwidth is

Q = \frac{2^\frac{BW}{2}}{2^{BW} - 1} = \frac{1}{2 \sinh\left(\frac{1}{2}\ln(2) BW \right)}, where is the bandwidth in octaves.


RLC circuits
In an ideal series , and in a tuned radio frequency receiver (TRF) the factor is:
(2025). 9788184314526, Technical Publications. .

Q = \frac{1}{R} \sqrt{\frac{L}{C}} = \frac{\omega_0 L}{R} = \frac {1} {\omega_0 R C}

where , , and are the resistance, and of the tuned circuit, respectively. Larger series resistances correspond to lower circuit values.

For a parallel RLC circuit, the factor is the inverse of the series case:

Q = R \sqrt{\frac{C}{L}} = \frac{R}{\omega_0 L} = \omega_0 R C Frequency Response: Resonance, Bandwidth, Q Factor ()

Consider a circuit where , , and are all in parallel. The lower the parallel resistance is, the more effect it will have in damping the circuit and thus result in lower . This is useful in filter design to determine the bandwidth.

In a parallel LC circuit where the main loss is the resistance of the inductor, , in series with the inductance, , is as in the series circuit. This is a common circumstance for resonators, where limiting the resistance of the inductor to improve and narrow the bandwidth is the desired result.


Individual reactive components
The of an individual reactive component depends on the frequency at which it is evaluated, which is typically the resonant frequency of the circuit that it is used in. The of an inductor with a series loss resistance is the of a resonant circuit using that inductor (including its series loss) and a perfect capacitor.
(2025). 9780849318351, CRC Press. .

Q_L = \frac{X_L}{R_L}=\frac{\omega_0 L}{R_L}

where:

  • is the resonance frequency in radians per second;
  • is the inductance;
  • is the inductive reactance; and
  • is the series resistance of the inductor.

The of a capacitor with a series loss resistance is the same as the of a resonant circuit using that capacitor with a perfect inductor:

Q_C = \frac{-X_C}{R_C}=\frac{1}{\omega_0 C R_C}

where:

  • is the resonance frequency in radians per second;
  • is the capacitance;
  • is the capacitive reactance; and
  • is the series resistance of the capacitor.

In general, the of a resonator involving a series combination of a capacitor and an inductor can be determined from the values of the components, whether their losses come from series resistance or otherwise:

Q = \frac{1}{\frac{1}{Q_L} + \frac{1}{Q_C}}


Mechanical systems
For a single damped mass-spring system, the factor represents the effect of simplified damping or drag, where the damping force or drag force is proportional to velocity. The formula for the factor is: Q = \frac{\sqrt{M k}}{D}, \, where is the mass, is the spring constant, and is the damping coefficient, defined by the equation , where is the velocity. Methods of Experimental Physics – Lecture 5: Fourier Transforms and Differential Equations ()


Acoustical systems
The of a musical instrument is critical; an excessively high in a will not evenly amplify the multiple frequencies an instrument produces. For this reason, string instruments often have bodies with complex shapes, so that they produce a wide range of frequencies fairly evenly.

The of a or needs to be high enough to pick one frequency out of the broader-spectrum buzzing of the lips or reed. By contrast, a is made of flexible plastic, and therefore has a very low for a brass instrument, giving it a muddy, breathy tone. Instruments made of stiffer plastic, brass, or wood have higher values. An excessively high can make it harder to hit a note. in an instrument may vary across frequencies, but this may not be desirable.

Helmholtz resonators have a very high , as they are designed for picking out a very narrow range of frequencies.


Optical systems
In , the factor of a is given by Q = \frac{2\pi f_o\,E}{P}, \, where is the resonant frequency, is the stored energy in the cavity, and is the power dissipated. The optical is equal to the ratio of the resonant frequency to the bandwidth of the cavity resonance. The average lifetime of a resonant in the cavity is proportional to the cavity's . If the factor of a 's cavity is abruptly changed from a low value to a high one, the laser will emit a pulse of light that is much more intense than the laser's normal continuous output. This technique is known as . factor is of particular importance in , where loss is linked to the damping of the surface plasmon resonance. While loss is normally considered a hindrance in the development of plasmonic devices, it is possible to leverage this property to present new enhanced functionalities.


See also


Further reading


External links

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time